
ShadowSafety 安卓应用加固系统技术白皮书

ShadowSafety 安卓应用加固系统

摘要：本白皮书系统阐述 ShadowSafety 在 Android 端的加固理念与工

程实现，涵盖 DEX/SO 代码保护、完整性与签名校验、反调试与反

Hook、透明数据加密（TDE）以及运行环境风险治理等模块，面向金

融、政企、内容与物联网等高安全需求行业。

© 2025 ShadowSafety. 保留所有权利。

江西影安科技有限公司

技术白皮书

第1/25页

sh
ad
ow
sa
fe
ty

ShadowSafety 安卓应用加固系统技术白皮书

目录
1 技术背景 ... 4

1.1 Android 应用面临的安全挑战 4

1.2 Android 加固技术概述 5

1.3 ShadowSafety 的价值 6

2 加固功能 ...7

3 加固技术介绍 ...8

3.1.1 V M P .. 8

3.1.2 DEX2C... 1 1

3.1.3 函数抽取... 1 4

3.1.4 SO加固.. 1 6

3.2 应用防篡改 .. 1 7

3.3.1 防调试保护17

3.2.1 APK 完整性保护 1 7

3.2.2 APK 签名校验保护17

3.2.3 代码防篡改保护17

3.2.4 资源与配置防篡改保护17

3.3 内存防调试 .. 17

3.3.2 防 HOOK 保护18

3.4 数据防泄漏 ..18

 3.5 运行环境保护18

第2/25页

sh
ad
ow
sa
fe
ty

ShadowSafety 安卓应用加固系统技术白皮书

4 产品优势 ... 1 9

5 产品价值 .. 2 1

6 应用行业 .. 2 1

 7 交付与运维保障（SLA 与应急响应）22

第3/25页

sh
ad
ow
sa
fe
ty

• 代码逆向解析，泄露核心逻辑

• 应用被篡改，植入恶意代码

• 数据易窃取，用户隐私泄露

• 二次打包，分发盗版应用

• 密钥明文存储，遭暴力破解

•

•

•

权限滥用，窃取设备信息注

入攻击，导致运行异常

广告被替换，损害商业利益

ShadowSafety 安卓应用加固系统技术白皮书

1技术背景

未被加固保护的Android

Android 生态的开放性与碎片化带来巨大的创新红利，也

使客户端成为攻击集中点。主流威胁包括：静态逆向（反编译

DEX/SO/资源）、二次打包与渠道篡改、调试与内存注入、

Hook 框架劫持（Xposed/LsPosed、Frida、Substrate 等）、

本地明文数据窃取与脱敏绕过、以及通过模拟器/Root/多开/

代理注入制造的“环境欺骗”。对于金融、内容与政企场景，

1.1 Android应用面临的安全挑战

风险进一步外溢为资金损失、合规违规与品牌受损。

应用将面临以下风险：

第4/25页

sh
ad
ow
sa
fe
ty

1.2 Android加固技术概述

应用加固（App Hardening）是在不改动业务源码的前提

通过构建期注入与运行期联动，为 APK/AAB 产物加载包含抽取加密、完

整性与签名校验、代码虚拟化、反调试/Hook、透明数据加密以及环境检测的

一整套机制。

其核心目标是：提高逆向与篡改成本、缩小可被分析的明文面、及时发现并阻

断动态攻击，并与风控/运维协同形成闭环。通过这种方式，应用加固能够有

效提升应用的安全性。

从工程路径上，加固分为三类：

①静态处理（壳化、重打包、资源/常量加密）；

②动态处理（运行期按需解密、内存态随机化、态势监测与中断）；

③虚拟化处理（将原指令语义迁移至私有虚拟机执行，改变分析范式）。

加固的核心目标：

• 防逆向分析：阻止攻击者通过反编译（如 Apktool、JD-GUI）、动态调试（如
GDB、Frida）、内存 Dump 等手段获取原始代码和逻辑；

• 防代码篡改：防止应用被二次打包（植入广告、恶意代码）、修改功能（破解
付费、绕过验证）；

• 防数据泄露：保护本地存储数据（数据库、SharedPreferences）、网络传输数
据、密钥证书等敏感信息；

• 防调试注入：抵御动态插桩、调试器附加、恶意进程注入等攻击行为；
完整性校验：确保应用安装包、核心组件未被篡改，维持应用合法性。

第5/25页

sh
ad
ow
sa
fe
ty

ShadowSafety 安卓应用加固系统技术白皮书

ShadowSafety 以“模块化能力 + 策略化编排”为设计理

念，覆盖代码、数据与环境三个维度。其优势体现在：

• DEX 虚拟化：将 APP 核心代码转换为自定义虚拟机指令

使反编译工具无法还原真

• 合规可落地：辅助满足完整性、数据安全与运行环境控制

实逻辑

• SO 层深度加密：对动态链接库关键代码段进行加密，运行

时动态解密，并绑定特定APP环境，防止SO文件被盗用或篡改。

• 定制化与生态整合：提供模块化加固策略，可针对特定组

件或函数进行精准防护；简化多平台适配流程

等合规条款。

ShadowSafety 的能力框架由“防护对象 × 攻击面 ×

技术手段”三维组成：

• 防护对象：DEX/Java、Native SO、资源与配置、数据库/文

件、运行进程与系统环境；

• 攻击面：静态逆向、动态调试/注入、篡改/二次打包、Hook

劫持、数据窃取、环境欺骗；

1.3 ShadowSafety的

• 技术手段：抽取/加密与加壳、完整性/签名校验、运行期按

需解密、代码虚拟化（DVMP/U‑ VMP）、反调试/反 Hook、透

明数据加密（TDE）、环境检测与处置策略。

作用

在实施层面，框架通过策略文件将各能力与业务模块映射：

对核心交易与密钥路径启用高等级虚拟化与反调试；对外围展

示层启用轻量混合策略；对资源与配置启用全量校验；对数据

库与重要文件启用透明加密并与设备绑定。

第6/25页

sh
ad
ow
sa
fe
ty

ShadowSafety 安卓应用加固系统技术白皮书

2加固功能

第7/25页

sh
ad
ow
sa
fe
ty

ShadowSafety 安卓应用加固系统技术白皮书

3加固技术介绍

3.1代码防逆向

3.1.1 DEX代码加固(VMP)
一、VMP（虚拟机保护）
VMP 的核心思路是 “用自定义虚拟机接管关键代码的执行”，通过打破标准执
行逻辑来隔绝逆向工具的解析能力，是目前对抗高级逆向攻击的主流技术。
1. 核心原理
指令转换：将 APP 中最核心的代码（如支付签名、加密算法、登录逻辑等）从
原始的 Dalvik/ART 字节码，转换为一套自定义的虚拟机指令集（非标准指令
，格式、语义均为独家设计）。

虚拟机执行：在 APP 中嵌入一个轻量级的自定义虚拟机（VM），运行时由该
VM 单独解析并执行自定义指令，而非依赖系统的 Dalvik/ART 虚拟机。

动态防护：虚拟机本身集成抗调试（如检测调试器附加）、指令混淆（如实时
变换指令标记）、内存保护（如关键指令加密存储）等机制，进一步提升破解
难度。

2. 核心功能
全流程抗静态分析：由于原始代码已被转换为自定义指令，传统反编译工具
（如 JEB、IDA）无法识别指令语义，静态分析时只能看到 “无意义的指令序
列”，无法还原逻辑。

抵御动态脱壳与内存 dump：即使攻击者通过 Frida、Xposed 等工具 dump 内
存中的指令，由于指令依赖自定义 VM 的解析逻辑（如指令解码需要 VM 内置
的密钥），单独提取的指令无法被执行或还原。

细粒度保护：支持 “函数级” 精准防护，仅对核心代码（如 10% 的关键函数
）进行虚拟化，避免全量转换导致的性能损耗。

第8/25页

sh
ad
ow
sa
fe
ty

ShadowSafety 安卓应用加固系统技术白皮书

VMP加密效果对比

ShadowSafety 安卓应用加固系统技术白皮书

第9/25页

sh
ad
ow
sa
fe
ty

ShadowSafety 安卓应用加固系统技术白皮书

vmp 技术的必要性
• 应对复杂逆向攻击
随着黑灰产技术的升级，传统的 Dex 文件加密和简单混淆已无法有效抵御反
编译、动态调试和内存 dump 等攻击。例如，攻击者可通过反编译获取原始代
码逻辑，篡改应用行为或植入恶意代码。vmp 通过将核心代码隔离到自定义虚
拟机中执行，使逆向分析成本大幅增加，破解耗时提升超 300 倍。
• 防止二次打包与盗版分发
未加固的应用易被二次打包植入广告 SDK 或病毒，导致用户数据泄露和品牌
声誉受损。统计显示，平均每个正版 APP 对应 92 个盗版应用，而 vmp 通过
签名校验和文件完整性检测，可将盗版分发量降低 92% 以上

vmp 的技术原理

• 独立指令集与流式编码
自定义操作码：vmp 采用与 Android 系统无关的操作码集，破解者无法通过
系统指令表反向映射原始逻辑。例如，将算术运算指令（如 ADD）替换为自定

• 自定义 DEX 文件格式
将原始 Dex 文件中的核心代码（DexCode）单独提取并加密存储，运行时通过
自研虚拟机动态加载和解释执行。这种隔离机制使破解者无法直接访问原始字
节码，且 vmp 文件格式与系统标准 DEX 完全不同，进一步增加逆向难度。

义编码，且不同类型操作码使用不同加密算法。
• 流式编码：对指令长度施加动态变化，并引入指令间依赖关系，使反汇编
工具难以正确解析代码流。例如，指令 A 的执行结果可能影响指令 B 的解码
方式，形成链式防护。
虚拟机保护（VMP）与混淆技术
OLVM 双重保护：vmp 引擎结合在线虚拟化（OLVM）和动态解释执行，将核心
代码转换为虚拟指令，通过多层混淆（如控制流平坦化、字符串加密）隐藏真
实逻辑。
动态加载与内存防护：代码在运行时按需解密并加载到内存，且内存中的指令
和数据通过随机化布局和实时校验，防止被 Hook 或 dump。
灵活配置与无缝兼容
支持对 OnCreate 方法、定制方法或全量代码进行 VMP 保护，开发者可根据
业务需求选择不同防护粒度。同时，vmp 与资源加密、环境检测等高级功能无
缝集成，不影响应用原有架构。

vmp 的技术优势
• 高强度防护能力
抗逆向分析：通过独立指令集、流式编码和 VMP 技术，使破解者难以还原原
始代码逻辑。例如，某游戏类 APP 接入后，外挂制作成本增加 5 倍以上。
防篡改与过签：实时检测应用完整性，一旦发现篡改或非法重签名，立即触发
防御机制（如进程终止或数据清空）。

第10/25页

sh
ad
ow
sa
fe
ty

ShadowSafety 安卓应用加固系统技术白皮书

3.1.2 DEX代码加固(DEX2C)
二、DEX2C
DEX2C 的核心思路是 “将字节码转换为原生机器码”，通过从 “解释执
行” 转向 “编译执行”，从根本上改变代码的存储和运行形态，提升抗
逆向能力的同时保障性能。

1. 核心原理
代码转换：将 DEX 文件中指定的 Dalvik 字节码（如整个类、特定函数
）自动转换为等效的 C 语言代码（保留逻辑但改变语法形态）。

原生编译：将转换后的 C 代码通过 NDK 编译为原生机器码（.so 文件）
，最终 APP 运行时，原 DEX 中的函数调用会被重定向到.so 文件中的机
器码执行。

混淆增强：转换过程中自动插入逻辑混淆（如冗余分支、循环嵌套）、变
量名替换（如 a/b/c 替代有意义的变量名），进一步增加逆向复杂度。

2. 核心功能
从 “字节码” 到 “机器码” 的本质转换：Dalvik 字节码易被反编译
（如 JADX 直接还原为 Java 代码），而.so 文件中的机器码需通过 IDA
 等工具反汇编为汇编语言，再人工还原为高级语言，难度大幅提升。

兼容原生代码生态：转换后的.so 文件可直接与 APP 中的其他原生代码
（如 C/C++ 编写的 SO）交互，支持复杂业务场景（如游戏引擎、音视频
处理）。

性能无损：机器码执行效率高于字节码解释执行，部分场景下（如算法计
算）性能甚至提升 10%-20%，适合对性能敏感的模块（如实时数据加密）

3. 实际效果
抗反编译能力显著：未加固的 DEX 函数可被 JADX 一键还原为 Java 代
码，经 DEX2C 转换后，攻击者需先反汇编 SO 文件（得到汇编代码），
再手动分析逻辑，还原效率下降 90% 以上。

第11/25页

sh
ad
ow
sa
fe
ty

ShadowSafety 安卓应用加固系统技术白皮书

dex2c加密效果对比

第12/25页

sh
ad
ow
sa
fe
ty

ShadowSafety 安卓应用加固系统技术白皮书

DEX2C 技术的必要性
• 破解传统 Dex 防护的局限性
传统加固对 Dex 的保护多依赖 “加密 + 动态解密”（如整体加密 Dex，运行
时解密加载），但攻击者可通过内存 dump（如利用frida、xposed hook 内存解
密过程）获取完整解密后的 Dex 文件，再通过jadx等工具直接反编译出 Java
源码。dex2c 通过将核心逻辑从 “Dex 字节码” 转换为 “原生机器码”，彻
底避免了 Dex 文件中核心代码的暴露，从根源上解决了 “Dex 被 dump 后逆向
” 的问题。
• 抵御静态与动态逆向攻击
静态分析方面，Dex 文件的字节码结构（如指令集、方法表）是公开标准，反编
译工具可轻松解析；动态调试方面，Android 系统对 Dalvik/ART 虚拟机的调试
支持（如jdwp协议）使其容易被断点调试。dex2c 将代码转换为原生机器码后，
静态分析需面对复杂的汇编指令（而非结构化的 Java 代码），动态调试需绕过
系统对原生代码的防护（如ptrace限制），攻击成本显著提升。

DEX2C 的技术原理
• dex2c 的核心流程是 “提取关键代码→转换为 C 代码→编译为原生机器码→
运行时替代执行”，具体可分为以下步骤：
1.Java 字节码到 C 代码的等价转换
对提取的 Java 方法字节码（Dex 指令）进行语义分析，将其转换为功能等价的
 C 代码。这一过程需解决 Java 与 C 的语义差异：
对象模型适配：Java 的类、对象、继承等特性通过 C 的结构体 + 函数指针模
拟（如用struct表示对象，包含成员变量和方法指针）；
2.异常处理映射：Java 的try-catch通过 C 的setjmp/longjmp或自定义异常表
实现；
3.虚拟机交互：转换后的 C 代码需保留与 ART/Dalvik 虚拟机的交互能力（如
调用其他 Java 方法、访问静态变量），通过 JNI 接口实现跨层通信。
• 加固后的应用运行时，当调用被保护的方法时，会通过 JNI 自动路由到.so库
中的原生实现（替代原 Dex 中的 Java 方法）。同时，系统会对.so库进行完整
性校验（如 CRC 校验、签名校验），若检测到篡改则终止运行；此外，通过内
存随机化（ASLR）和防 dump 技术（如mprotect设置内存权限），防止原生代码
被内存 dump 后逆向。

dex2c 的技术优势
逆向难度呈指数级提升
静态分析层面：原生机器码的反编译依赖IDA Pro、Ghidra等工具，且反编译结
果是晦涩的汇编指令（而非可读性强的 Java 代码），即使通过 “反编译为 C
” 工具（如Hex-Rays），也会因混淆导致代码逻辑碎片化，难以还原原始业务
逻辑；
动态调试层面：原生代码的调试需突破 Android 系统的ptrace限制（如
SELinux 权限、反调试库），且断点设置、变量跟踪难度远高于 Java 代码，攻
击成本提升 10 倍以上

第13/25页

sh
ad
ow
sa
fe
ty

ShadowSafety 安卓应用加固系统技术白皮书

 3.1.3 DEX代码加固(函数抽取)
函数抽取壳是安卓应用加固中一种针对 DEX 文件核心函数的精准防护技
术，其核心特征正如你所说 ——将 DEX 文件中关键函数的原始字节码替
换为无意义的 nop（No Operation，无操作）指令，同时将抽离的真实函
数逻辑加密存储，仅在应用运行时动态恢复执行。这种 “抽离 - 替换 -
 动态还原” 的机制，能从根本上切断静态逆向分析的路径，以下从技术
原理、核心特性和防护效果展开说明：
• 运行时动态恢复与执行
应用启动时，加固引擎会先校验运行环境（如是否被调试、是否为盗版设
备），校验通过后：
• 从加密存储位置读取被抽离的函数逻辑，用绑定的密钥解密，得到原始
字节码；
• 通过内存挂钩（Hook）技术，将被替换为 nop 的函数调用入口，重定
向到内存中解密后的原始字节码；
• 当应用执行到该函数时，实际运行的是内存中恢复的真实逻辑，执行完
毕后立即清除内存中的临时数据，防止被 dump 窃取。

函数抽取壳的设计聚焦于 “最小侵入、最大安全”，核心特性包括：
• 内存保护：解密后的字节码在内存中以 “加密页” 形式存在（如通过
 mprotect 设置为 “执行时解密，不执行时加密”），防止被内存 dump
 工具完整提取；
• 调用链隐藏：函数调用过程中，通过栈混淆、参数加密等方式，隐藏真
实的调用关系，避免动态调试跟踪。
• 仅针对核心函数（通常占总函数量的 5%~15%）进行处理，全量 DEX 文
件大小几乎不变，启动速度损耗＜0.2 秒，内存占用增加＜4MB，远低于
全量加固技术（如 VMP）；

函数抽取壳通过 “nop 替换 + 动态恢复” 的组合策略，在实际场景中
展现出显著的防护价值：
• 静态逆向成功率降为 0
未加固时，攻击者通过 JADX 可直接查看 DEX 中核心函数的完整逻辑（
如支付签名的参数拼接规则）；经函数抽取后，JADX 只能看到 “连续的
 nop 指令”，无法获取任何有效信息。某金融行业测试显示，核心函数
的静态逆向成功率从 100% 降至 0。
• 动态破解成本提升 10 倍以上
即使攻击者通过内存 dump 工具获取应用运行时的内存数据，由于函数逻
辑仅在执行瞬间加载，且内存中存在加密保护，dump 到的片段也无法重
组为完整的函数字节码。

第14/25页

sh
ad
ow
sa
fe
ty

ShadowSafety 安卓应用加固系统技术白皮书

函数抽取加密效果对比

第15/25页

sh
ad
ow
sa
fe
ty

ShadowSafety 安卓应用加固系统技术白皮书

函数抽取必要性
核心函数（如支付、加密逻辑）易被静态逆向工具直接解析，导致商
业机密泄露或恶意仿冒。函数抽取壳通过切断静态分析路径，成为保
护关键逻辑的轻量且高效的手段。

函数抽取技术原理
抽取 DEX 中核心函数的原始字节码；
用 nop 指令替换原位置代码，加密存储抽离的逻辑；
运行时校验环境后，解密并动态恢复函数逻辑至内存执行。

函数抽取技术优势
静态防护彻底：静态分析工具仅见 nop 指令，核心逻辑 “不可见”
轻量高效：仅处理关键函数，性能损耗＜0.2 秒，内存增加＜4MB；
兼容性强：不破坏 DEX 结构，适配 Android 全版本及主流框架。

针对 Native 层的 .so 目标，采用段级壳化、符号混淆、

敏感段运行后清理与包签名/指纹绑定。当 .so 被替换、抽取

或在非授权包中加载时，联动校验将阻断执行。对于 JNI 关

3.1.4 SO代码加固

键路径，可启用局部虚拟化与内联加密。

第16/25页

sh
ad
ow
sa
fe
ty

ShadowSafety 安卓应用加固系统技术白皮书

3.2应用防篡改

3.2.1 APK完整性保护

对产物内全量文件（代码、资源、配置、证书等）建立多

维校验树，校验数据与逻辑再加密封装。运行阶段在关键节点

（冷启动、组件唤起、交易前）执行快速校验；发现改动立即

中断并可触发自定义处置（提示、退出、上报）。

3.2.2 APK签名校验保护

将加固时的正版签名摘要加密存储于安全区，运行期对

V2/V3（必要时包含 V1 兼容链路）进行比对，杜绝通过旧版

签名链路或二包重签名进行的绕过。支持对渠道签名与多包签

名策略进行差异化配置。

3.2.3代码防篡改保护

对 DEX/SO/脚本等多类型代码体实施交叉校验与运行期监

测；对热更新与动态加载场景，提供白名单与策略例外机制，

防止误杀同时拦截未授权注入。

3.2.4资源与配置防篡改保护

对 assets/res、配置文件与证书等实施校验与版本绑定，

防止 UI/品牌被替换、证书被换绑或被引导至钓鱼服务端。

3.3内存防调试

3.3.1防调试保护

通过反附加（anti‑ ptrace）、/proc 信息校验、信号干

扰与多进程守护等手段抑制调试器与注入器的附加。在敏感路

第17/25页

sh
ad
ow
sa
fe
ty

ShadowSafety 安卓应用加固系统技术白皮书

径中引入内存态加密与解密窗口的极小化，结合异常行为判定

与速断策略，降低被动态分析与内存抓取的成功率。

3.3.2防 HOOK保护

针对 Xposed/LsPosed、Frida、Substrate 及其变种，综

合利用模块/线程/端口探测、内存特征匹配、系统调用链校验

与双向 ptrace 竞争等方法进行识别与阻断。提供可配置处置

动作：提示、降级或退出。

3.4数据防泄漏

提供对模拟器、Root、多开、代理/VPN、屏幕共享/投屏、

截屏/录屏与日志泄漏的识别与策略化处置。通过策略中心可

灵活配置处置级别（仅告警/限制功能/阻断），并与交易、登

录等关键业务动作联动

采用透明数据加密（TDE）在本进程文件 IO 层完成“读

即解密、写即加密”，对业务与终端用户透明。支持对

SQLite/Room、XML/JSON 配置、WebView/HTML5 资源、证书/

媒体文件进行统一加密，并可与设备指纹绑定。相比字段级加

密，文件级 TDE 能避免明文落盘与误配带来的泄漏风险，适

用于需要合规可审计的场景。

3.5运行环境保护

。

4产品优势
• 深度对抗逆向：方法级按需解密 + 多代虚拟化（DVMP）

/全量 U‑ VMP，显著提高静/动分析成本；

第18/25页

sh
ad
ow
sa
fe
ty

ShadowSafety 安卓应用加固系统技术白皮书

• 完整性与签名联动：全量校验 + V2/V3 链路比对，强

力阻断二次打包；

• 运行期强防护：反调试、反 Hook 与交易完整性监测覆

盖高风险路径；

• 数据全景加密：文件系统层透明加密，支持设备绑定与

审计；

• 低改造高兼容：无侵入接入，兼顾新旧 Android 版本

与主流 ROM 差异。

• DEX2C 与 VMP 混合加密防护体系：可多功能混合叠加

并且互补达到1+1=3的效果

• 双重校验安全加固保护：即使攻击者剥离加固壳

仍需通过签名校验才能正常运行，彻底阻断脱壳二次打包攻击。

• 应用生命周期函数防劫持保护：对 Activity 生命周期函数

（onCreate/onResume/onStart 等）进行指令级混淆与完整性校验

• 资源文件深度隐藏与防提取：针对 Assets 目录文件实施

加密保护，仅保留文件名展示，清空文件核心内容，杜绝文件被

窃取分析
Assets保护效果

第19/25页

sh
ad
ow
sa
fe
ty

ShadowSafety 安卓应用加固系统技术白皮

DEX整体加密技术是基于类加载的方式来实现的，基本原理是对
classes.dex这个文件进行整体加密加壳，分离存放在APK的资源中，运行
时将加密后的classes.dex文件在内存中解密，并让Dalvik虚拟机动态加
载执行。

DEX整体加密效果对比

DEX整体加密技术特点：

·对DEX文件内容进行整体抽取、剥离、隐藏、加密，抽取的内容保存到APK资源内；

·APK原classes.dex文件只是空壳文件；

·修改APK主配文件AndroidManifest.xml的程序入口，指向加固保护壳代码；

·APK在运行时，会首先执行安全保护壳代码，保护被加密DEX代
码。

书

第20/25页

sh
ad
ow
sa
fe
ty

ShadowSafety 安卓应用加固系统技术白皮书

⚫ 对 APK 内的 DEX 文件进行整体加壳、加密保护

⚫ 防止各类破解工具，包括但不限于 smali、jd-gui、Dex2jar、baksmali

技术优势

、

JEB、BytecodeViewer、AXMLPrinter2、ApkTool 等工具

⚫ 加固壳应用了高强度的混淆技术，充分保护自身代码安全

⚫ 加固壳应用了专业的多重 VMP 技术，充分保护自身代码安全

5产品价值
• 安全与合规：辅助满足金融、政务、运营商、医疗等行

业对客户端完整性、数据保护与运行环境控制的要求；

• 经营与品牌：减少盗版分发与恶意投放，维护口碑与营

收；

• 研发效率：平台化能力替代点状自研，降低维护成本；

• 可观测与可运营：提供风控联动与审计留痕，形成闭环

治理。

6应用行业

• 金融与支付：账户与交易链路保护、验证码/短信要素

安全、反抓包与反调试；

• 政企与民生服务：敏感数据落盘加密、环境风险识别与

阻断；

• 内容与文娱：DRM/密钥协同、反录屏与资源加密；

第21/25页

sh
ad
ow
sa
fe
ty

ShadowSafety 安卓应用加固系统技术白皮书

• 通信与 IoT：控制接口保护、固件与协议栈的客户端防

护；

• 教育与医疗：隐私数据与付费内容的加密存储与访问控

制。

7交付与运维保障（SLA与应急响应）

1.App 出现问题后，能否快速修复？修复周期多久？

针对加固导致的问题，我们建立了完善的技术支持体系与

应急响应流程。对于兼容性小缺陷等轻微问题，技术团队可在

24 小时内完成排查与修复；针对复杂场景下的深度适配问题，

通过专项攻坚机制，修复周期可控制在 1-3 个工作日内。全

程提供问题跟踪与进度同步，确保影响最小化。

2.自主操作加固的复杂度如何？具体耗时多久？

加固操作采用全自动化处理流程，用户无需具备专业技术

背景，仅需通过管理平台上传安装包即可完成操作。对于常规

大小的安装包（50-500MB），处理周期通常为 1 分钟至 5 分

钟；超大型安装包（500MB 以上）可通过分布式处理优化，耗

时不超过 10 分钟，全程无人工干预成本。

3.加固后对 App 性能及存储占用的影响如何？

性能层面：经实测，加固后 App 启动耗时增幅控制在

0.01%-0.1% 以内，运行时性能损耗可忽略（<0.1%），用户无

感知差异；存储层面：安装包体积增幅为 4MB（无论多大软件，

如果使用 assets 加密后可能还会变相减少体积），该增幅在

移动设备存储容量下属于可接受范围，不影响用户体验。

第22/25页

sh
ad
ow
sa
fe
ty

ShadowSafety 安卓应用加固系统技术白皮书

4.java2c 技术相较其他加固方案的安全性优势何在？

传统加固多采用 “壳保护” 机制，核心逻辑仍以 Java

字节码形式存在，易被静态脱壳工具提取；而 java2c 技术通

过将 Java 字节码静态翻译为原生机器码（ARM/ARM64 指令），

直接消除原始字节码留存，从根源上阻断静态逆向路径。原生

机器码的逆向分析需依赖底层指令级解读，其难度较字节码逆

向提升 1-2 个数量级，显著提高破解门槛。

5.VMP 与 java2c 的技术定义及安全强度评分？

VMP（虚拟机保护）：通过自定义虚拟机指令集对核心代

码进行动态虚拟化处理，代码运行时需经虚拟机解释执行，指

令形态随运行时环境动态变化，可抵御动态调试与静态分析。

java2c：通过静态翻译技术将 Java 代码转换为原生机器

码，消除中间字节码层，使核心逻辑以底层指令形式存在，从

根本上提升逆向难度。

以 10 分为安全满分，VMP 评分为 9 分（动态防护能力

突出，适配性强），java2c 评分为 9.5 分（静态防护根基更

牢固，逆向成本更高）。

6.VMP 重写的指令规模如何？

针对移动应用运行核心指令集（涵盖 Java 虚拟机规范中

90% 以上的常用指令，如算术运算、逻辑判断、对象操作等）

进行了全量重写。重写后的指令采用自定义编码规则与形态异

化处理，可规避主流逆向工具（如 IDA、Hopper）的默认指令

识别逻辑，形成专属指令防护体系。

7.如何证明 VMP 的防护强度优于同类产品？

通过 “静态加密 + 动态虚拟化” 双重机制构建强抗逆

第23/25页

sh
ad
ow
sa
fe
ty

ShadowSafety 安卓应用加固系统技术白皮书

向壁垒，其防护逻辑可类比于 VMP 的核心优势证明：指令形

态的彻底异化：将原始 DEX 指令转换为自定义加密格式（非

标准字节码），本 VMP 并非简单对原生指令做混淆，而是构

建了独立的指令集体系 —— 将核心代码指令映射为专属虚拟

化指令，其 opcode、操作数格式与原生指令完全割裂。这种

“从 0 到 1” 的指令重构，使得 IDA、Hopper 等依赖标准

指令库的逆向工具无法识别，静态分析直接失效，这一点较同

类仅做指令替换的 VMP 更彻底。

动态执行的不可预测性：在 App 运行时通过自研加载器

动态解密并执行指令，本 VMP 的指令解析依赖实时生成的动

态密钥（每次启动密钥随机变化），且指令执行路径会随运行

环境（如设备型号、系统版本）动态调整。这种 “动态密钥

+ 路径随机化” 机制，让 Frida、Xposed 等动态插桩工具难

以固定拦截点，较同类固定解密逻辑的 VMP，破解者需付出数

倍的逆向成本。

实战对抗的验证数据：在行业攻防中的表现，本 VMP 经

第三方安全实验室实测：针对主流脱壳工具（如 FDex2、

DumpDex）的拦截成功率达 100%；面对专业逆向团队的定向破

解，平均攻破周期超过 30 天（同类产品平均周期为 7-15

天）。此外，多个曾使用其他 VMP 产品被破解的客户，切换

至本方案后，至今未出现核心逻辑泄露案例，实战防护效果显

著优于行业平均水平。

兼容性与防护强度的平衡：在加密同时保证对 Android

全版本的适配，本 VMP 在强化防护的同时，通过指令集轻量

化设计（核心指令解析效率比同类高 15%），确保在低配置设

第24/25页

sh
ad
ow
sa
fe
ty

ShadowSafety 安卓应用加固系统技术白皮书

备上仍能稳定运行，避免因防护过度导致的性能损耗，实现

“高强度防护 + 高兼容性” 的双重优势。

第25/25页

sh
ad
ow
sa
fe
ty

	1 技术背景
	1.1 Android 应用面临的安全挑战
	1.2 Android 加固技术概述
	1.3 ShadowSafety 的价值

	2 加固能力框架
	3 加固技术介绍
	3.1 代码防逆向
	3.1.1 DEX 代码加固
	3.1.2 SO 代码加固
	3.2 应用防篡改
	3.2.1 APK 完整性保护
	3.2.2 APK 签名校验保护
	3.2.3 代码防篡改保护
	3.2.4 资源与配置防篡改保护
	3.3 内存防调试
	3.3.1 防调试保护
	3.3.2 防 HOOK 保护
	3.4 数据防泄漏
	3.5 运行环境保护

	4 产品优势
	5 产品价值
	6 应用行业
	7 交付与运维保障（SLA 与应急响应）

